
Carnegie Mellon University
Research Showcase @ CMU

Computer Science Department School of Computer Science

6-2007

A Simple and Affordable TTL Processor for the
Classroom
David Feinberg
The Harker School

Follow this and additional works at: http://repository.cmu.edu/compsci

This Article is brought to you for free and open access by the School of Computer Science at Research Showcase @ CMU. It has been accepted for
inclusion in Computer Science Department by an authorized administrator of Research Showcase @ CMU. For more information, please contact
research-showcase@andrew.cmu.edu.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fcompsci%2F596&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F596&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fcompsci%2F596&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F596&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

A Simple and Affordable TTL Processor for the Classroom
Dave Feinberg
The Harker School
500 Saratoga Ave

San Jose, CA 95129
(408) 249-2510

davef@harker.org

ABSTRACT

This paper presents a simple 4-bit computer processor design that

may be built using TTL chips for less than $65. In addition to

describing the processor itself in detail, we discuss our experience

using the lab kit and its associated machine instruction set to teach

computer architecture to high school students.

Categories and Subject Descriptors
C.1.m [Processor Architectures]: Miscellaneous

General Terms
Design, Languages

Keywords
Architecture, Processor, Education

1. I#TRODUCTIO#
In the fall semester of 2005, eighteen high school students at The

Harker School successfully connected TTL chips on solderless

breadboards to build their own computer processors. Most of the

students had no practical electronics experience, beyond a basic

understanding of serial and parallel circuits. We created this

computer architecture course to complement the high-level

software focus of the AP computer science course these students

had already completed. Our primary goals for the course were:

• to explore what a computer is

• to examine the interplay between hardware and software

• to link machine code to high-level program constructs

As an undergraduate, the author was among the last of MIT's

6.004 Computation Structures students to use the MAYBE—a lab

kit for building an 8-bit TTL computer processor. Future 6.004

students would use hardware simulation software instead.

Although such simulation tools present a powerful and affordable

way to study computer hardware, we believe there is greater value

in working with physical hardware, which provides the most

convincing means for students to internalize the subtle interplay

between software and hardware.

2. LAB KIT REQUIREME#TS
In setting out to find a hardware lab kit, we identified three key

requirements. The kit must (1) be understandable, (2) require

minimal assembly time, and (3) be purchased at minimal cost.

Striving to keep the processor as simple as possible naturally lead

to meeting all three requirements. To achieve a simple design,

however, it was necessary to give up many features of more

serious processors. As long as our processor's instruction set

comprised a universal programming language, we were willing to

sacrifice the ability to run large or even useful programs.

Optimizations such as caching and pipelining would only obscure

the core computer science concepts we wished to illuminate.

Like MIT's MAYBE, nearly all university hardware lab kits

and numerous amateur-designed processors feature the TTL chip

set. Although TTL has stringent voltage requirements, its ability

to withstand static charge made it ideal for our course. Because

TTL chips typically come in 4-bit packages, MIT's 8-bit MAYBE

processor required 2 ALU chips, 2 counter chips, etc. Students

assembling MAYBE kits frequently found themselves working

through the night to complete their wiring. As this level of time

commitment is unacceptable for a high school class, we settled on

a 4-bit datapath for our processor. We feel certain that students

can learn as much from building a 4-bit processor as an 8-bit one,

and a 4-bit processor means half as much time spent wiring and

debugging, half as much money spent on chips, and a solderless

breadboard of half the size and cost.

A search through simple processor designs used in various

university computer architecture courses and those published

online by amateurs revealed only a handful of 4-bit processors.

As each of these was either too complex or insufficiently

documented, we set out to design our own processor. In the

course, we referred to it affectionately as "the CHUMP" ("Cheap

Homebrew Understandable Minimal Processor").

3. DATAPATH
In all aspects of design, we aimed to identify the simplest

solution. Designing an understandable processor meant using a

RISC architecture, in which a simple datapath and small

instruction set could give rise to complex behavior. We decided

that the simplest design would involve fetching and executing the

instruction in the same clock tick. Since both the instruction and

the data it manipulated in RAM would need to be accessed in a

single tick, we stored our program separately in an EEPROM.

Each CHUMP instruction consists of two parts: an op-code

(indicating which operation the processor should perform) and a

4-bit constant/immediate value (used as a data value, RAM

address, or program line number). Hence, the CHUMP can only

manipulate 4-bit data values, representing numbers in the narrow

range from 0 to 15 (or -8 to 7). Likewise, it can only access 16

locations in RAM. Finally, the use of a single 4-bit program

counter means that programs cannot exceed 16 lines.

Although we originally sought to limit the instruction set to

just four or five essential instructions, we found that supporting a

set of 14 instructions did not complicate our design. This larger

instruction set allows students to write programs that would be

both readable and compact. Thus, a 4-bit op-code is required to

distinguish among the 14 instruction types, and each CHUMP

instruction uses 8 bits, as shown in Figure 1.

Figure 1: Anatomy of a CHUMP Instruction

The CHUMP processor design is illustrated in Figure 2, with

each of the major components corresponding to a single TTL

chip. All bold arrows indicate 4-bit connections (4 wires). The

program counter chip (labeled "PC") stores the number of the

instruction currently being accessed from the Program ROM. A

multiplexer selects between the instruction's constant value and

the data value read from the RAM chip. The selected value may

then be used as:

• the second operand to the ALU, which may increase,

decrease, or replace the value stored in the accumulator

register (labeled "Accum").

• the next instruction number

• the next address to read/write (stored temporarily in

flip-flops labeled "Addr")

When a value is read from memory, it is available for use in

the next clock tick by the subsequent instruction. Thus, it takes

two clock ticks and two different instructions to first read from an

address in RAM and then load this value into the accumulator.

However, only a single instruction is required to store a value in

the accumulator to memory. Not surprisingly, this asymmetrical

behavior proved to be a stumbling block for students.

The overall datapath was selected both for its simplicity and

its computational power. It allows the program execution to jump

to a line number stored in RAM, and to use a value stored in

RAM as the next RAM address to access. It also allows the value

in the accumulator to be used as the next line number or memory

address, provided the programmer first stores it to RAM.

Figure 2: The CHUMP Processor

This processor design suffers from several major limitations,

the most significant being the maximum program length of 16

instructions (which cannot even support the simplest meaningful

program). Equally frustrating is the inability to write interactive

programs, which might pause for user input from switches.

Finally, the CHUMP instruction set does not support comparison

operations, which could be used to perform arithmetic on larger

numbers.

Table 1. CHUMP Constant Instructions

Instruction Summary Description

LOAD
0000

accum = const;
pc++;

load constant into

accumulator
ADD
0010

accum += const;
pc++;

add constant to

accumulator
SUBTRACT
0100

accum -= const;
pc++;

subtract constant

from accumulator

STORETO
0110

mem[const] = accum;
pc++;

store accumulator

value to constant

address
READ
1000

addr = const;
pc++;

read from constant

address
GOTO
1010

pc = const; jump to constant

instruction address

IFZERO
1100

if (accum == 0)
pc = const;

else
pc++;

jump to constant

instruction if

accumulator is

zero

Each of these limitations is easily addressed by the addition

of a couple more chips. Nonetheless, we elected to keep the core

processor as simple as possible, and then to allow students to

make such modifications at the end of the course. Although

several students were capable of implementing such

enhancements, ultimately none chose to do so (a good indication

that the limited CHUMP design was sufficient for our course).

4. I#STRUCTIO# SET
The CHUMP instruction set features seven key operations, each

of which comes in two flavors: constant and memory. For

example, there is an ADD command for adding a constant to the

accumulator, and another ADD for adding a value from memory to

the accumulator. The 4-bit constant portion of the instruction is

ignored by the seven memory commands. Table 1 describes the

seven constant commands. The corresponding memory

commands operate similarly on a memory value, and have a 1 in
the op-code's low-order bit.

For example, the following program increments the value in

RAM location 2 repeatedly. Used properly, every READ
command should be followed by a memory command, and every

memory command should be preceded by a READ command.

0: 10000010 READ 2
1: 00010000 LOAD IT
2: 00100001 ADD 1
3: 01100010 STORETO 2
4: 10100000 GOTO 0

5. CO#TROL LOGIC
We now describe the portion of the processor that examines the 4-

bit op-code and uses it to control the operation of each chip. The

CHUMP has 5 control points:

• Multiplexer: may select the constant or memory value

• ALU: may perform one of several arithmetic operations

• Accumulator: may load or ignore the ALU's output

• RAM: may perform either a read or write operation

• Program Counter: may load a new value or increment

Because the ALU must perform multiple operations, it

requires several control bits (6, in the case of the 74LS181 ALU

chip we used). Note also that the control bit for the RAM must

first pass through a flip-flop, so that it is clocked together with the

4 address bits. (We used a single chip for all 5 flip-flops.)

We used a single bit to control jumps. This jump bit

indicates either (a) the program counter should increment,

regardless of the value of ALU output pin Z (which can be used to

determine if the accumulator value is zero), or (b) the program

counter's behavior should depend on Z. (Consequently, an extra

logic gate is needed to determine the program counter's load input

from the jump and Z bits.) Table 2 summarizes the values of the

control bits used by the CHUMP. The multiplexer's control bit

(not shown) is simply the low order op-code bit.

Note that the ALU function for a GOTO command should

always cause Z to indicate a zero value, while the function for an

IFZERO command should cause Z to reflect whether ALU input

A is zero. (For the 74LS181 chip, the relevant A=B pin indicates

whether the ALU's output is 1111. Therefore, the ALU should
perform the Logic 1 operation for the GOTO instruction, and �ot A

for the IFZERO instruction.)

Table 2. Control Logic

Instruction ALU Accumulator RAM Jump

LOAD B load read next

ADD A plus B load read next

SUBTRACT A minus B load read next

STORETO ignore write next

READ ignore read next

GOTO [see text] ignore read load if Z

IFZERO [see text] ignore read load if Z

Finally, the 4 op-code bits output by the program ROM must

be fed through a layer of combinational logic so as to determine

the values of the many control bits indicated above. Students

chose to use an additional ROM to perform this task.

6. LAB KIT
A fully assembled CHUMP processor is shown in Figure 3.

Figure 3: A high school student built this CHUMP lab kit.

The clock circuit we used ran at just 1 Hz, allowing students

to follow the execution of their programs in real-time. In practice,

we rarely used the clock circuit, relying instead on a simple RS-

circuit to serve as a manual clock source. Only at the end of the

course, when the entire kit had been fully tested, did students

replace the manual clock with the real one to watch their

computer run automatically.

Our piecemeal lab kit featured the IC chips listed in Table 3.

Most are easily replaced by other available TTL-compatible chips.

Table 3. Integrated Circuits Used

Chip # Description Usage

555 Timer clock source

74LS00 Quad 2-Input NAND jump bit logic

74LS157 Quad 2/1 Data Selector select constant/memory

74LS161 4-Bit Counter program counter

74LS174 Hex D Flip-Flop next read/write address

74LS181 Arithmetic Logic Unit add/subtract, test if zero

74LS377 Octal D Register accumulator register

74S289 64-Bit RAM data storage

AT28C17 2k × 8 Parallel EEPROM program, control logic

Keeping lab costs low was essential to make digital

electronics accessible to a high school classroom. As students

would be required to pay for their lab kits, we were determined to

keep the cost of a lab kit comparable to that of a text book. While

most such university lab kits cost many hundreds of dollars, our

minimal kit wound up costing less than $65 each. Table 4 shows

a breakdown of the major costs involved.

Table 4. Major Lab Material Costs

Item Cost Recommended Vendor

solderless breadboard $20 CircuitSpecialists.com

four 9-volt batteries $6 Target, Walgreens

22- or 24-gauge solid wire $5 Fry's Electronics

two AT28C17 EEPROMs $4 Jameco Electronics

wire stripper $4 Jameco Electronics

large plastic bin $2 Wal-Mart

needle-nose pliers $2 Orchard Supply Hardware

74LS181 ALU $2 Jameco Electronics

Although the CHUMP can be assembled on a much smaller

board, a solderless breadboard with 3000+ contact points was

selected to give students greater flexibility in laying out

components. Such boards typically sell for $35, so finding them

online for $20 was critical in keeping the lab kit affordable.

A 7805 voltage regulator (and requisite capacitors) provided

a steady 5-volt power source for the various chips. It requires an

input of 7.5 – 12.5 volts to work effectively. Rather that using an

AC/DC adapter (easily destroyed by a temporary short), we opted

to use a single 9-volt battery, and purchased several per lab kit.

The remainder of the lab kit cost was due to the various IC

chips listed in Table 3, along with several simpler chips used

earlier in the course (inverter, AND, OR, XOR). Also included in

this cost were LEDs (one connected by 330Ω resistor to each of

the 4 accumulator output pins), DIP switches (used with 2.2kΩ

resistors as input for various lab assignments), transistors (used

only in the first lab), and various resistors and capacitors required

for the power supply and clock circuits. Finally, $50 payed for a

single classroom EEPROM programmer.

7. COURSE CO#TE#T
The course was built around a series of digital electronics lab

assignments, listed in Table 5. In many of the labs, students were

asked to use simpler circuit elements to build more complex ones.

For example, students used flip-flops and logic gates to build a

simple counter, thereby earning a counter chip for their kits.

(Likewise, successful completion of the final lab earned a student

the right to use a real computer to implement a simple virtual

machine, assembler, etc.)

Table 5. Lab Assignment Sequence

Lab Assignment Summary

5 Volts
build voltage regulator;

learn to use breadboard, switches, LEDs

Transistors build logic gates from transistors

NAND Gates build logic gates from NANDs

Combinational Logic build selector/adder from NOT/AND/OR

The Clock build clock circuit

Finite State Machines build FSMs from gates and flip-flops

Counter / ROM
use counter to cycle through ROM data

(later served as PC and program storage)

ALU / Register
load/subtract input value from register

(later serves as accumulator datapath)

RAM Datapath add selector, flip-flops, and RAM

Control Logic
connect program counter, control ROM;

set 4-bit op-code to test instructions

Program Execution
connect program ROM and clock;

write/execute programs

The building of the processor was assigned incrementally,

rather than as one large project. Thus, seven of the assignments

listed in Table 5 walked the students through the building of a

particular subsystem of the emerging processor. Although these

labs provided students with the design (and sometimes explicitly

told students which pins to use), the layout of chips on the board

and much of the wiring decisions were left to the students.

The course also addressed a variety of conceptual material,

including the static discipline, Karnaugh maps, finite state

machines, and a cursory discussion of computability. In focusing

only on material essential for teaching what a computer is, we

omitted topics such as timing, pipelining, caching, interrupts,

virtual memory, and operating systems. On the other hand,

students would not truly understand what a computer is without

understanding what it means for a machine or language to be

universal. Thus, the final two weeks of the course were devoted

to an exploration of the power of the CHUMP language itself.

8. THE CHUMPA#ESE LA#GUAGE
Clearly the CHUMP's 64-bit RAM is no match for a Turing

machine's infinite tape. Therefore, we began talking about what

the CHUMP language could do if it weren't limited by 4-bit

values, addresses, etc. We referred to this unlimited form of the

language as "Chumpanese", and represented it with an assembly-

like syntax. In Chumpanese:

• Programs may be arbitrarily long.

• All values are integers of arbitrarily large magnitude.

• There are an infinite number of memory locations.

• Names are used to identify line numbers, memory

addresses, and memory offsets.

For example, the following listings show a simple

Chumpanese program and an equivalent Java program.

loop: READ count while (true)
 LOAD IT count++;
 ADD 1
 STORETO count
 GOTO loop

It can be shown that Chumpanese is indeed a universal

language by demonstrating that any program in a known universal

language can be translated into an equivalent Chumpanese

program. (For example, the universal One Instruction Computer's

SUBZ command can be translated into a sequence of nine

Chumpanese instructions.) However, we decided that such a

proof would be tedious and potentially unconvincing to our

students. Instead, we aimed to develop their intuition that

Chumpanese was universal by teaching them how to emulate the

common programming constructs of a language they already

believed to be universal: Java.

We therefore taught students to represent variables as

memory addresses in Chumpanese, to translate if and while
statements into sequences with IFZERO and GOTO commands, to

see reference-type variables as memory locations containing

addresses of other memory locations, to represent arrays and

simple objects (really structs) as contiguous segments of memory,

and to view array indices and instance variable names as offsets

into that memory. We showed students how to represent a stack

and how to write Chumpanese sequences that could push/pop

stack values. Finally, we taught students to use PUSH and POP
macros to implement procedures and procedure calls, thereby

connecting their understanding of computer architecture to the

material they had studied in AP Computer Science.

9. REFLECTIO#S
On the whole, the course and the lab kit were overwhelming

successes, with all 18 students building functional computer

processors (with varying degrees of help). Students enjoyed the

course quite a bit, and final exam responses indicate that most left

with a thorough understanding of how to design combinational

logic circuits and finite state machines, how their processor

worked, and how to translate the simplest Java code segments into

machine language.

Of course, there are a few aspects of the course that did not

work out as well as we had hoped. In our software-based courses,

students are able to debug most errors without teacher assistance.

When a student does need help, a quick glance at their output or

code is usually sufficient for us to advise them as to what to try

next. Our experience teaching computer architecture, however,

was entirely different. Although a few students did master the art

of hardware debugging, many of our best programmers found

themselves helpless to debug their circuitry. It seemed that

students were constantly asking for help from every corner of the

classroom. Because a hardware bug typically takes much more

time to address than a software one, helping a single student could

easily devour an entire class period, while other students grew

increasingly frustrated waiting for help.

Although the processor design proved to be robust and

reproducible, the students found some of the supporting elements

of the lab kit to be frustrating at times. By far, the largest

hardware frustration we faced concerned power consumption.

Students spent hours debugging problems due only to dead

batteries. Although the simple circuits students built at the

beginning of the course did not draw much current, the completed

CHUMP, with its EEPROMs, RAM, ALU, etc., drained the 9-volt

batteries at a rate sometimes exceeding one battery per hour of

use. We therefore needed to replace batteries frequently near the

end of the course.

Finally, students had difficulty with the CHUMP instruction

set. They frequently confused the READ and LOAD commands, as

well as the constant and memory variants of each instruction.

This confusion hampered their ability to debug their processors,

although most students understood the instruction set by the time

the course ended. In retrospect, we wish we had provided the

students with a Chumpanese virtual machine, and had them use it

to complete a set of programming exercises before assigning them

to wire the CHUMP datapath.

It would also have helped to leave more time at the end of

the course to explore more advanced Chumpanese programs

involving procedures. These exercises proved to be too much for

all students to grasp in a limited time. Nonetheless, the students'

initial skepticism regarding the power of their simple processors

gradually disappeared. Ultimately, we believe students left the

course with an appreciation for how even the most high-level

software must run as a sequence of simple commands by a

computer processor which is no more than an arrangement of

fluctuating voltages.

10. REFERE#CES
[1] Lancaster, D. E. TTL Cookbook. Howard W. Sams,

Indianapolis, IN, 1974.

[2] Madnick, Stuart. Understanding the Computer (Little Man

Computer). Unpublished manuscript, 1993.

[3] Patterson, D. A. and Hennessy, J. L. Computer Organization

and Design. Morgan Kaufmann, San Francisco, CA, 2004.

[4] Ward, S. and Terman, C. 6.004 Computation Structures.

MIT OpenCourseWare, 2002

	Carnegie Mellon University
	Research Showcase @ CMU
	6-2007

	A Simple and Affordable TTL Processor for the Classroom
	David Feinberg

	Microsoft Word - DaveFeinbergTTLProcessor.doc

